Abstract
The present study investigates the influences of stratospheric quasi-biennial oscillation (QBO) and El Niño–Southern Oscillation (ENSO) on the intensity of stratospheric isentropic mixing based on ERA-Interim and MERRA-2 reanalysis products. It is found that isentropic mixing in the stratosphere is modulated by QBO and ENSO. An analysis of the QBO basis function in the multiple regression model reveals that isentropic mixing in the lower stratosphere is suppressed in the equatorial region in the WQBO phase, while the mixing enhances in the subtropical and mid-latitude regions. This result is not consistent with the Holton–Tan mechanism. However, isentropic mixing in the mid-latitudes becomes stronger in the middle stratosphere in the EQBO phase, which agrees well with the Holton–Tan effect. Composite analysis indicates that QBO-induced changes in the direction and speed of the stratospheric zonal wind can affect wave propagation and wave breaking. In the WQBO phase, zonal wind weakens, and a planetary wave is anomalously converging near 30°N, which leads to an increase in isentropic mixing; on the contrary, wind speed becomes large, and the upward propagation of planetary wave divergence, which lead to the isentropic mixing, becomes weak near 60°N. In the EQBO phase, the wind is relatively weak around 60°N, and the isentropic mixing is strong. Multiple regression analysis reveals the ENSO impact on the intensity of isentropic mixing, which shows weak mixing in the middle and high latitudes and strong mixing in the low latitudes of the lower stratosphere in the El Niño years. In the middle stratosphere, isentropic mixing enhances in the mid-latitude region due to intensified upward propagation of planetary waves but weakens in the polar region. Composite analysis reveals a clear relationship between the mixing strength zones of the El Niño and La Niña years with the position of the polar jet and changes in zonal wind speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.