Abstract

Walking is a basic human activity and many orthopedic diseases can manifest with gait abnormalities. However, the muscle activation intervals of lower limbs are not clear. The aim of this study was to explore the contraction patterns of lower limb muscles by analyzing activation intervals using surface electromyography (SEMG) during walking. Four muscles including the tibialis anterior (TA), lateral gastrocnemius (LG), medial gastrocnemius (MG), and rectus femoris (RF) of bilateral lower extremity of 92 healthy subjects were selected for SEMG measurements. The number of activations (activation intervals) and the point of the highest root mean square (RMS) EMG signal in the percentage of the gait cycle (GC) were used to analyze muscle activities. The majority of TA and RF showed two activation intervals and both gastrocnemius parts three activation intervals during walking. The point of the highest RMS EMG signal in the percentage of the GC for TA, LG, MG and RF are 5%, 41%, 40%, and 8%, respectively. The activation intervals were mostly affected by age, height, different genders and bilateral limbs. This study identified the different activation intervals (four for each muscle) and the proportion of healthy adults in which they occurred during the normal gait cycle. These different activation intervals provided a new insight to evaluate the function of nerves and muscles. In addition, the activation interval and RMS peak time proposed in this study can be used as new parameters for gait analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.