Abstract

This paper presents the analysis of the 2-sum problem and the spectral algorithm. The spectral algorithm was proposed by Barnard, Pothen and Simon in [1]; its heuristic properties have been advocated by George and Pothen in [4] by formulation of the 2-sum problem as a Quadratic Assignment Problem. In contrast to that analysis another approach is proposed: permutations are considered as vectors of Euclidian space. This approach enables one to prove the bound results originally obtained in [4] in an easier way. The geometry of permutations is considered in order to explain what are ‘good’ and ‘pathological’ situations for the spectral algorithm. Upper bounds for approximate solutions generated by the spectral algorithm are proved. The results of numerical computations on (graphs of) large sparse matrices from real-world applications are presented to support the obtained results and illustrate considerations related to the ‘pathological’ cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.