Abstract

Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor (SIPMSM), it is important to accurately calculate the temperature field distribution of SIPMSM, and a magnetic-thermal coupling method is proposed. The magnetic-thermal coupling mechanism is analyzed. The thermal network model and finite element model are built by this method, respectively. The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load, and the relationship between the load and temperature field is researched under the condition of the synchronous speed. In addition, the equivalent thermal network model is used to verify the magnetic-thermal coupling method. Then the temperatures of various nodes are obtained. The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method, which can be applied to other permanent magnet motors with complex structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call