Abstract

In this article, two different strategies to enhance power system stability exploiting synthetic inertia are presented and compared to assess the possibility of increasing the penetration of converter-based generation in power systems, keeping a suitable stability margin. Synthetic inertia is the emulation, carried out by converted-based generation, of the inertial response provided by rotating generators during frequency events. Two approaches are hence described, focusing on wind power. In the first approach, the primary power source is connected to the grid by a grid-following converter, and it exploits the energy content of the direct current link, suitably sized (or, with the same concept, of a suitable energy buffer available). The second approach uses a grid-forming converter model, whose features resemble more a traditional synchronous machine. The article aims at assessing the contribution to frequency stability that can be provided by converter-based generation. The simulation results demonstrate that converter-based generation can efficiently guarantee frequency stability, thus proving that future power systems will be able to manage ever-increasing renewable energy source converter-based generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.