Abstract

Surface tension driven flow in a cylindrical melt suspended between two rods was investigated by numerical solution of the steady state differential equations for heat and momentum transfer. Radiation heating and electron beam heating were considered approximately. For small values of the driving force, one rotating ring was formed in the top half of the zone, and its mirror image in the bottom half. At larger driving forces, secondary cells form which probably would undergo oscillatory motion. The influence of Prandtl number, zone movement, and buoyancy on the convection was also studied. The primary resistance to mass transfer in the laminar regime was in the center of the zone rather than at the solid-liquid interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call