Abstract

A low-cost PurpleAir PA-II sensor was installed, in 2020 at the Institute of Engineering (IOE) Pulchowk Campus, TU located in Kathmandu valley, Nepal, to measure particulate matter with an aerodynamic diameter equal to or smaller than 2.5 µm (PM2.5). The observation shows that hourly averaged PM2.5 fluctuates bimodally in four seasons (Winter: December, January, and February; Spring: March–May; Summer: June–September; and Autumn: October–November), with the highest levels occurring during morning and evening rush hours. PurpleAir records PM2.5 with a maximum average of 101 ± 26.31 µg m–3, in winter, 55.58 ± 11.42 µg m–3, in spring, 45.46 ± 12.16 µg m–3, in autumn, and a minimum of 22.78 ± 3.23 µg m–3, in the summer. Due to rain and diffusion in the vertical atmosphere, PM2.5 levels are lowest during the summer. The ± number for each season represents the standard deviation from the hourly average. AOD550nm data collected by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard two NASA satellites, Terra and Aqua, are compared with simultaneously observed PM2.5. With humidity correction factor f(RH), R2 increases from 0.413 to 0.608 (in winter), 0.426 to 0.508 (in spring), and 0.083 to 0.293 (in autumn). The summer AOD data and PM2.5 are not compared due to a lack of AOD observations. By comparing the column-integrated aerosol data with the surface-level aerosol concentration, this study illustrates the relevance of atmospheric parameters while investigating the reliability of PurpleAir measurements. A cluster analysis of five-day back trajectories of air masses arriving at different altitudes in different seasons indicates that long-range transport of air pollution contributes to MODIS's column integrated AOD by adding aerosol population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.