Abstract

In today’s era, where ‘time’ is considered as ‘money,’ people are completely depending on e-commerce and online banking for their routine purchases, shopping, and financial transactions. This increasing dependency on e-commerce are increasing fraud in online transactions, and credit card fraud is one example. Such malicious and unethical practices may cause identity theft and monitory loss to the people across the world. In this research paper, our effort is to identify the best Supervised Machine Learning algorithm that helps in classifying fraudulent and non-fraudulent transactions under credit card fraud on an imbalanced dataset. To conduct this research and compare the results, we have used five different Supervised Machine Learning Classification techniques. On implementing these machine learning techniques, it has been observed that both Supervised Vector Classifier and Logistic Regression Classifier perform better for detecting credit card fraud in an imbalanced dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.