Abstract
AbstractThe order of stress singularity at a sharp corner of a plate needs to be known before a numerical approach can be taken to determine accurately the stress distribution of a plate with irregular geometry (such as a V-notch) under loading. This work analyzes the order of the stress singularity at a bi-material corner of a thick plate under bending, based on Reddy's third-order shear deformation plate theory. An eigenfunction expansion technique is used to derive the asymptotic displacement field in the vicinity of the sharp corner by solving the equilibrium equations in terms of displacement functions. This paper explicitly shows the first known characteristic equations for determining the order of the stress singularity at the interface corner of a bonded dissimilar isotropic plate. Moreover, the numerical results are given in graphic form for the order of stress singularity at the interface corner in bonded dissimilar isotropic plates and at the vertex of a bi-material wedge with free radial edges. The results presented herein fill some of the gaps in the literature
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have