Abstract
Piezoelectric semiconductor (PSC) nanowires have a great potential to be the basic element of the next generation of micro and nano electro-mechanical systems. A lack of understanding of their electromechanical coupling behaviors can be a major obstacle to using PSC nanowires. In this paper, a one-dimensional model is proposed to investigate the electromechanical coupling behavior of PSC nanowires under static extension. In the present model, effects of piezoelectricity and flexoelectricity are considered simultaneously. Closed-form expressions for the distributions of electron concentrations and electromechanical fields are obtained. The effects of applied distributed traction force, flexoelectric effect and initial carrier concentration have been discussed. Results show that the distributions of electromechanical fields predicted by the present model are different from those of the classical model (which only considers piezoelectric effect). For example, the applied uniform distributed traction force breaks the symmetrical distributions of electromechanical fields, resulting in the redistribution of electron concentrations. However, flexoelectricity shows a significant weakening effect on the values of relevant electromechanical fields. This research offers a new method to tune the electromechanical coupling characteristics of piezoelectric semiconductor materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.