Abstract
In this paper Spectral feature like Spectral Roll off, Spectral Centroid, RMS (Root Mean Square) energy, Zero crossing Rate, Spectral irregularity, Brightness, of speech audio signals are extracted and analyzed. From analysis, prominent features are selected. These prominent features are used for speaker identification. For performing feature analysis, database of seven speakers is created. By using features, speakers are divided into two groups or clusters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have