Abstract

To further reveal the interaction mechanism between plants and pathogens, this study used confocal Raman microscopy spectroscopy (CRM) combined with chemometrics to visualize the biopolymers distribution of kiwifruit cell walls at different infection stages at the cellular micro level. Simultaneously, the changes in the content of various monosaccharides in fruit were studied at the molecular level using high-performance liquid chromatography (HPLC). There were significant differences in the composition of various nutrient components in the cell wall structure of kiwifruit at different infection times after infection by Botryosphaeria dothidea. PCA could cluster samples with infection time of 0–9 d into different infection stages, and SVM was used to predict the PCA classification results, the accuracy >96 %. Multivariate curve resolution-alternating least squares (MCR-ALS) helped to identify single substance spectra and concentration signals from mixed spectral signals. The pure substance chemical imaging maps of low methylated pectin (LMP), high methylated pectin (HMP), cellulose, hemicellulose, and lignin were obtained by analyzing the resolved concentration data. The imaging results showed that the lignin content in the kiwifruit cell wall increased significantly to resist pathogens infection after the infection of B. dothidea. With the development of infection, B. dothidea decomposed various substances in the host cell walls, allowing them to penetrate the interior of fruit cells. This caused significant changes in the form, structure, and distribution of various chemicals on the fruit cell walls in time and space. HPLC showed that glucose was the main carbon source and energy substance obtained by pathogens from kiwifruit during infection. The contents of galactose and arabinose, which maintained the structure and function of the fruit cell walls, decreased significantly and the cell wall structure was destroyed in the late stage of pathogens infection. This study provided a new perspective on the cellular structure changes caused by pathogenic infection of fruit and the defense response process of fruit and provided effective references for further research on the mechanisms of host-pathogen interactions in fruit infected by pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.