Abstract

The stable operation of high-voltage transmission lines is significantly affected by atmospheric icing. Research on the physical processes of icing and de-icing of transmission lines in micro-terrain, as well as the factors affecting them, is a crucial theoretical foundation for enhancing current icing prediction capabilities and guiding the planning of transmission lines in mountainous areas. The difficulty lies in the fact that, unlike the calculation of surface radiation, the amount of radiation received by the lines is affected by a combination of terrain, environmental shading, and the orientation of the lines. Therefore, this work initially establishes a method for calculating the total amount of radiant heat received per unit length of the line throughout the day at various heights from the ground, based on the angle of solar incidence and the three-dimensional spatial position of the lines. Furthermore, a method of mapping the regional heat radiation by gridding the direction of the lines was proposed, providing the daily heat radiation and equivalent Joule heat. The proposed mapping method supports anti-icing planning for high-voltage transmission lines in micro-terrain areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.