Abstract

AbstractField observations of near‐surface soil moisture, collected over several seasons in a watershed in suburban Maryland, are compared with values of the topographic soil moisture index generated using digital elevation models (DEMs) at a range of grid cell sizes from photogrammetric and light detection and ranging (LIDAR) data sources. A companion set of near‐surface soil moisture observations, DEMs and topographic index values are also presented for a nearby forested catchment. The degree to which topographic index values are an effective indicator of near‐surface soil moisture conditions varies in the two environments. The urbanizing environment requires topographic index values from a DEM with a much finer grid cell resolution than the LIDAR data can provide, and the relationship is stronger in wetter conditions. In the forested environment, the DEM resolution required is considerably lower and adequately supported by the photogrammetric data, and the relationship is strong under all moisture conditions. These results provide some insights into the length scales of near‐surface hydrological processes in the urbanizing environment, and the resolution of terrain data required to model those processes. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.