Abstract

The problems of shear flexible beams are analyzed by the MLPG method based on a locking‐free weak formulation. In order for the weak formulation to be locking‐free, the numerical characteristics of the variational functional for a shear flexible beam, in the thin beam limit, are discussed. Based on these discussions a locking‐free local symmetric weak form is derived by changing the set of two dependent variables in governing equations from that of transverse displacement and total rotation to the set of transverse displacement and transverse shear strain. For the interpolation of the chosen set of dependent variables (i.e. transverse displacement and transverse shear strain) in the locking‐free local symmetric weak form, the recently proposed generalized moving least squares (GMLS) interpolation scheme is utilized, in order to introduce the derivative of the transverse displacement as an additional nodal degree of freedom, independent of the nodal transverse displacement. Through numerical examples, convergence tests are performed. To identify the locking‐free nature of the proposed method, problems of shear flexible beams in the thick beam limit and in the thin beam limit are analyzed, and the numerical results are compared with analytical solutions. The potential of using the truly meshless local Petrov‐Galerkin (MLPG) method is established as a new paradigm in totally locking‐free computational analyses of shear flexible plates and shells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.