Abstract
BackgroundInadequate copper intake and increased fructose consumption represent two important nutritional problems in the USA. Dietary copper-fructose interactions alter gut microbial activity and contribute to the development of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to determine whether dietary copper-fructose interactions alter gut microbial activity in a sex-differential manner and whether sex differences in gut microbial activity are associated with sex differences in hepatic steatosis.MethodsMale and female weanling Sprague-Dawley (SD) rats were fed ad libitum with an AIN-93G purified rodent diet with defined copper content for 8 weeks. The copper content is 6 mg/kg and 1.5 mg/kg in adequate copper diet (CuA) and marginal copper diet (CuM), respectively. Animals had free access to either deionized water or deionized water containing 10% fructose (F) (w/v) as the only drink during the experiment. Body weight, calorie intake, plasma alanine aminotransferase, aspartate aminotransferase, and liver histology as well as liver triglyceride were evaluated. Fecal microbial contents were analyzed by 16S ribosomal RNA (16S rRNA) sequencing. Fecal and cecal short-chain fatty acids (SCFAs) were determined by gas chromatography-mass spectrometry (GC-MS).ResultsMale and female rats exhibit similar trends of changes in the body weight gain and calorie intake in response to dietary copper and fructose, with a generally higher level in male rats. Several female rats in the CuAF group developed mild steatosis, while no obvious steatosis was observed in male rats fed with CuAF or CuMF diets. Fecal 16S rRNA sequencing analysis revealed distinct alterations of the gut microbiome in male and female rats. Linear discriminant analysis (LDA) effect size (LEfSe) identified sex-specific abundant taxa in different groups. Further, total SCFAs, as well as, butyrate were decreased in a more pronounced manner in female CuMF rats than in male rats. Of note, the decreased SCFAs are concomitant with the reduced SCFA producers, but not correlated to hepatic steatosis.ConclusionsOur data demonstrated sex differences in the alterations of gut microbial abundance, activities, and hepatic steatosis in response to dietary copper-fructose interaction in rats. The correlation between sex differences in metabolic phenotypes and alterations of gut microbial activities remains elusive.
Highlights
The prevalence of nonalcoholic liver disease (NAFLD) in the USA has increased rapidly in the past two decades, from 19 to 24%, which is close to the global prevalence of 25.24% [1, 2]
Several female rats in the CuA plus fructose (CuAF) group developed mild steatosis, while no obvious steatosis was observed in male rats fed with CuAF or CuMF diets
While the variations of perigonadal white adipose tissue (WAT) weight as well as WAT/body weight ratios were related to dietary copper content in male rats, they were more likely to be affected by dietary fructose in female rats
Summary
The prevalence of nonalcoholic liver disease (NAFLD) in the USA has increased rapidly in the past two decades, from 19 to 24%, which is close to the global prevalence of 25.24% [1, 2]. NAFLD and NASH exhibit age and sex differences, with a higher prevalence in men than in premenopausal women. A higher rate of NAFLD was found among the postmenopausal women [5,6,7]. In agreement with this finding, sex differences exist in the risk factors, such as obesity and type 2 diabetes [8, 9]. Dietary copper-fructose interactions alter gut microbial activity and contribute to the development of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to determine whether dietary copper-fructose interactions alter gut microbial activity in a sex-differential manner and whether sex differences in gut microbial activity are associated with sex differences in hepatic steatosis
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have