Abstract

Ozone pollution in 2019 in China is particularly severe posing a tremendous threat to the health of Chinese inhabitants. In this study, we constructed a more reliable and accurate 1-km gridded dataset for 2019 with as many sites as possible using the inverse distance weight interpolation method to analyze spatiotemporal ozone pollution characteristics and health burden attributed to ozone exposure from the perspective of different diseases and weather influence. The accuracy of this new dataset is higher than other public datasets, with the coefficient of determination of 0.84 and root-mean-square error of 8.77 ppb through the validation of 300 external sites which were never used for establishing retrieval methods by the datasets mentioned-above. The averaged MDA8 (the daily maximum 8 h average) ozone concentrations over China was 43.5 ppb, and during April-July, 83.9% of total grids occurred peak-month ozone concentrations. Overall, the highest averaged exceedance days (60 days) and population-weighted ozone concentrations (55.0 ppb) both concentrated in central-eastern China including 9 provinces (only 11.4% of the national territory); meanwhile, all-cause premature deaths attributable to ozone exposure reached up to 142,000 (54.9% of national total deaths) with higher deaths for cardiovascular and respiratory, and the provincial per capita premature mortality was 0.27~0.44‰. The six most polluted weather types in the central-eastern China are in order as follows: westerly (SW and W), cyclonic, northerly, and southerly (NW, N, and S) types, which accounts for approximately 73.2% of health burden attributed to daily ozone exposure and poses the greatest public health risk with mean daily premature deaths ranging from 466 to 610. Our findings could provide an effective support for regional ozone pollution control and public health management in China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.