Abstract

The timing and location of autoignition can be highly sensitive to turbulent fluctuations of composition. Second-order Conditional Moment Closure (CMC) provides transport equations for conditional (co)variances in turbulent reacting flows. CMC equations accounting for compressibility and differential diffusion are analyzed using data from direct numerical simulation of an autoignitive lifted turbulent hydrogen jet flame [C.S. Yoo, R. Sankaran, J.H. Chen, Three-dimensional direct numerical simulation of turbulent lifted hydrogen/air jet flame in a heated coflow. Part 1. J. Fluid. Mech., (2008)]. At the flame base, second-order moments were required to accurately model the conditional reaction rates. However, over 80% of the second-order reaction rate component was obtainable with a small subset (16%) of the species-temperature covariances. The balance of the second-order CMC equation showed that turbulent transport across spatial composition gradients initiates generation of conditional variances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call