Abstract
The research of fluid containing nanoparticles for the heat transport characteristics is very famous because of its variety of real-life applications in various thermal systems. Although the thermal efficiency of the nanofluid was effective but still the nano scientists were trying to introduce some new advance class of fluid. Therefore, an advance class of fluid is developed by the dispersion of two different nano sized particles in the conventional base fluid known as “Hybrid nanofluid” which is more effective compared to simple nanofluids in many engineering and industrial applications. Therefore, motivated from the hybrid type of nanofluids in the current research we have taken two-dimensional laminar and steady flow of second grade fluid passing through porous plate. The engine oil base fluid is widely used fluid in the engineering and industrial problems. Keeping these applications in mind the engine oil is considered and two different nanoparticles Copper and aluminum oxide are added in ordered to get the required thermal characteristics. In addition to this the thermal radiation, chemical reaction, activation energy, Brownian motion and thermophoresis are also addressed during the current research. The present proposed higher-order PDE’s is transformed to the non-linear system of ODE’s. For the solution of the proposed high non-linear model HAM method is employed. As the hybrid nanofluid are highlighted on the second-grade fluid flow over a horizontal porous flat plate. During the present analysis and experimental study, it has been proved that the performance of hybrid nanofluid is efficient in many situations compared to nanofluid and regular fluid. For physical interpretation all the flow parameters are discussed through graphs. The impact of volume fraction is also addressed through graphs. Moreover, the comparative analysis between hybrid and nanofluid is carried out and found that hybrid nanofluid performed well as compared to nanofluid and regular fluid. The engineering quantities obtained from the present research have been presented in tables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.