Abstract
Rock cuttability has great influence on the rock excavation efficiency of TBM (tunnel boring machine). In order to evaluate rock cuttability in real time, quickly, accurately and efficiently during TBM excavating, the relevant excavation parameters of Zagros, Kerman and Bazideraz tunnels were first collected. Then, the regression analyses between excavation parameters and rock cuttability were carried out. The two-dimensional regression analyses studied the relationship between operating parameters (thrust F and rotation speed RPM) and the characterization parameters (torque T and penetration rate PR). The three-dimensional regression analyses were utilized to create the PR and specific energy SE models based on operating parameters. The result shows that the established three-dimensional regression models have good prediction performance, and its performance is superior to two-dimensional models. Moreover, the prediction model of uniaxial compressive strength UCS and the classification model of rock cuttability were founded based on SE. The rock cuttability is divided into three levels, namely, easy (level 1), medium (level 2), and poor (level 3), in which the corresponding SE ranges are 0 to 6, 6 to 10 and exceeds 10 kWh·m−3, respectively. Finally, the intelligent algorithms, combined with excavation parameters, were introduced to establish UCS prediction model and rock cuttability classification model, and the good prediction performance was achieved. The above studies can provide necessary references and ideas for real-time, rapid, accurate and effective evaluation of rock cuttability based on TBM excavation parameters, and has certain guiding significance for engineering application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Geomechanics and Geophysics for Geo-Energy and Geo-Resources
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.