Abstract

Aim of this research was to evaluate the remineralizing potential of three different remineralizing pastes on enamel that has been demineralized. Sixty healthy mandibular single-rooted human premolars extracted for orthodontic reasons from subjects between 18 and 25 years of age were included in this research. An area of 4 mm × 4 mm (window) was marked on the buccal surfaces of teeth samples, coated with nail varnish except for the window, which was scrutinized for changes in the values subsequent to demineralization as well as remineralization. Samples were kept in demineralizing solution for 96 hours to produce the artificial lesion in the enamel. Consequent to this process of demineralization, the 60 premolar teeth were randomly allocated to the following three groups (20 in each group) depending on the remineralizing paste used for application as group I: bioactive glass constituting remineralizing paste; group II: tricalcium phosphate (TCP) comprising remineralizing paste; and group III: calcium sucrose phosphate (CaSP) remineralizing paste. Following the pH-cycling process, the confocal laser scanning microscope was used to assess the area of demineralization and remineralization. The mean areas of demineralization were slightly more (133.24 ± 0.09) in the remineralization paste comprising bioactive glass seconded by the remineralization paste having CaSP (131.39 ± 0.18), and lastly the remineralizing paste constituting TCP (129.59 ± 0.14). Maximum areas of remineralization were found in the pastes that had CaSP group (96.14 ± 0.04), next by the paste having bioactive glass group (102.18 ± 0.17), and then the remineralization paste constituting TCP (118.37 ± 0.21). The difference was statistically significant among the three remineralization pastes used. Amid the confines of this in vitro research, a conclusion that the remineralization pastes comprising CaSP exhibited enhanced remineralization capacity in comparison to the group having bioactive glass and TCP was established. Caries is a highly prevalent multifactorial disease, but its progression can be prevented in the initial stage of demineralization through remineralization. Significantly increasing attention to the treatment of carious lesions that are not cavitated by employing noninvasive remineralization methods to achieve restoration of enamel has been rendered in the field of research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call