Abstract

Dark energy, one of the mysterious and impactful forms of energy in the cosmos has a crucial role in propelling the rapid expansion of the cosmos. As a result it is highly likely that dark energy interacts with astrophysical objects in some direct or indirect way. The present paper introduces a simplified method to simulate the interaction between energy and conspicuous baryonic matter. It is accomplished by using a dense pulsar named PSRJ1614-2230 as a representative model star. The study involves solving Einsteins field equations within the stars interior using the Kuchowicz spacetime framework. The solutions obtained are then analyzed across physical as well as geometrical parameters such as metric potentials, pressure, density and energy conditions. Based on this analysis, it is suggested that the formation of the star embraced with dark energy equation of state exhibits stability. Importantly the proposed stellar model does not have any singularities, meets the stability criteria. Additionally, numerical results for the adiabatic and abreu index indicate that the model star displays stiffness and resilience against radial adiabatic perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.