Abstract

ABSTRACT Prediction and simulation of load-related reflective cracking in air field pavements require three-dimensional models in order to accurately capture the effects of gear loads on crack initiation and propagation. In this paper, we demonstrate that the Generalized Finite Element Method (GFEM) enables the analysis of reflective cracking in a three-dimensional setting while requiring significantly less user intervention in model preparation than the standard FEM. As such, it provides support for the development of mechanistic-based design procedures for airfield overlays that are resistant to reflective cracking. Two gear loading positions of a Boeing 777 aircraft are considered in this study. The numerical simulations show that reflective cracks in airfield pavements are subjected to mixed mode behavior with all three modes present. They also demonstrate that under some loading conditions, the cracks exhibit significant channeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.