Abstract
ABSTRACT Asphalt Concrete (AC) overlays are a common strategy for maintaining PCC airfield pavements. However, the movement of joints in the underlying pavement may lead to reflective cracks propagating to the overlay. The problem is highly three-dimensional resulting in mixed mode of cracks due to the aircraft gear loading configurations and underlying concrete pavement joint spacing and design. The development of a 3D model of airfield pavements to predict reflective cracking using Finite Element Method (FEM) and Generalized Finite Element Method (GFEM), is presented in this study. GFEM enrichment strategy and global-local approach are used to achieve efficient framework for developing the models from both computational and user time perspective. Viscoelastic fracture analysis was performed using elastic-viscoelastic correspondence principle. Sensitivity of the domain size, order of approximation and boundary conditions are investigated in the numerical simulations. It is shown that the crack initiation and propagation is a combination of Mode-I (tensile) and Mode-II (shearing) crack opening. The presented models contributes to the mechanistic empirical reflective cracking design algorithm for the FAA pavement design program.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.