Abstract
The analysis of joint probability distributions of rainfall characteristics such as severity and duration is important in water resources management. Deriving their distributions using standard statistical techniques are often problematical due to its complexity. Standard methods usually assume that the rainfall characteristics are independent or that their marginal distributions belong to the same family of distributions. The use of copulas based methodologies can circumvent these restrictions and are therefore increasingly popular. However, the copulas and marginal distributions that are commonly used belong to specific parametric families and their adoption could lead to spurious inferences if the underlying assumptions are violated. For this reason, we recommend a nonparametric or semiparametric approach to estimate the joint distribution of rainfall characteristics. In this paper, we introduce and compare several copula–based approaches, each involving a combination of parametric or nonparametric marginal distributions conjoined by a parametric or nonparametric copula. An empirical illustration of the different approaches using rainfall data collected from six stations in the state of Victoria, Australia, demonstrated that a nonparametric approach can often give better results than a purely parametric approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.