Abstract

• The non-parametric copula is integrated with efficient system reliability approach. • An unbiased estimate of reliability based on the information theory is provided. • Lagrange multiplier is estimated from Pearson , Spearman or Kendall correlation. System reliability analysis involving correlated random variables is challenging because the failure probability cannot be uniquely determined under the given probability information. This paper proposes a system reliability evaluation method based on non-parametric copulas. The approximated joint probability distribution satisfying the constraints specified by correlations has the maximal relative entropy with respect to the joint probability distribution of independent random variables. Thus the reliability evaluation is unbiased from the perspective of information theory. The estimation of the non-parametric copula parameters from Pearson linear correlation, Spearman rank correlation, and Kendall rank correlation are provided, respectively. The approximated maximum entropy distribution is then integrated with the first and second order system reliability method. Four examples are adopted to illustrate the accuracy and efficiency of the proposed method. It is found that traditional system reliability method encodes excessive dependence information for correlated random variables and the estimated failure probability can be significantly biased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.