Abstract

Radiation from an open-ended coaxial transmission line into an N-layer dielectric medium is studied in application to nondestructive evaluation of materials. Explicit formulations for two cases of layered media, one terminated into an infinite half-space and the other into a conducting sheet are addressed in general form. In the theoretical derivations it is assumed that only the fundamental TEM mode propagates inside the coaxial line. The terminating admittance of the line is then formulated using the continuity of the power flow across the aperture. The admittance expressions for specific cases of two-layer dielectric composite with generally lossy dielectric properties, and a two-layer composite backed by a conducting sheet are presented and inspected explicitly. The numerical results of the aperture admittance formulation are discussed and compared with the available infinite half-space model which had been experimentally verified.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.