Abstract

There is excitement within the algorithms community about a new partitioning method introduced by Yaroslavskiy. This algorithm renders Quicksort slightly faster than the case when it runs under classic partitioning methods. We show that this improved performance in Quicksort is not sustained in Quickselect; a variant of Quicksort for finding order statistics. We investigate the number of comparisons made by Quickselect to find a key with a randomly selected rank under Yaroslavskiy's algorithm. This grand averaging is a smoothing operator over all individual distributions for specific fixed order statistics. We give the exact grand average. The grand distribution of the number of comparison (when suitably scaled) is given as the fixed-point solution of a distributional equation of a contraction in the Zolotarev metric space. Our investigation shows that Quickselect under older partitioning methods slightly outperforms Quickselect under Yaroslavskiy's algorithm, for an order statistic of a random rank. Similar results are obtained for extremal order statistics, where again we find the exact average, and the distribution for the number of comparisons (when suitably scaled). Both limiting distributions are of perpetuities (a sum of products of independent mixed continuous random variables).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.