Abstract

Glycosylation is an important protein post-translational modification that plays a pivotal role in the bioactivity of therapeutic proteins and in the infectivity of viral proteins. Liquid chromatography with tandem mass spectrometry readily identifies protein glycans with site specificity. However, the overnight incubation used in conventional in-solution proteolysis leads to high turnaround times for glycosylation analysis, particularly when sequential in-solution digestions are needed for site-specific glycan identification. Using bovine fetuin as a model glycoprotein, this work first shows that in-membrane digestion in ∼3 min yields similar glycan identification and quantitation when compared to overnight in-solution digestion. Protease-containing membranes in a spin column enable digestion of therapeutic proteins (trastuzumab and erythropoietin) and a viral protein (SARS-CoV-2 receptor binding domain) in ∼30 s. Glycan identification is similar after in-solution and in-membrane digestion, and limited in-membrane digestion enhances the identification of high-mannose glycans in trastuzumab. Finally, stacked membranes containing trypsin and chymotrypsin allow fast sequential proteolytic digestion to site-specifically identify the glycans of SARS-CoV-2 receptor binding domain. One can easily assemble the protease-containing membranes in commercial spin columns, and spinning multiple columns simultaneously will facilitate parallel analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call