Abstract

Micro fluid-jet polishing technology is a new kind of ultra-smooth machining method which proposed on the basis of float polishing principle and combined with small tool polishing. This article will use micro jet ultra-smooth machine which developed by ourselves to develop the process experiment for plane elements. In the experiment, the material removal rate and surface roughness are taken as the assessment index, and the orthogonal experiment method is used to study the processing effect of different process parameters, such as the spindle speed, the pressure of the grinding head and the abrasive concentration. On the basis of the experimental results and combined with the micro jet polishing mechanism, the processing effect law of the various process parameters is analyzed. It shows that, the influence of polishing pressure and abrasive concentration on the removal efficiency is single, that is to say, the removal efficiency can be increased either by increasing the polishing pressure or by increasing the concentration of the slurry. However, the influence of the grinding speed on removal efficiency is not simple, the removal efficiency can be increased by increasing the grinding speed in the certain range, if continue to increase, the removal efficiency will decrease. The influence of the process parameters on the roughness is more complex, but it can be summarized grossly as follows: if the roughness is required to reduce quickly, the large polishing pressure and high concentration slurry can be chosen, but it has a large depth of removal; if the roughness is required to reduce and the removal depth is as small as possible, the little polishing pressure and the dilute polishing liquid can be chosen, but it has a long polishing time. So in the actual processing, the process parameters should be adjusted according to different machining needs, to finally reach the optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.