Abstract
The present study is an analysis of pressure-driven electrokinetic flows in hydrophobic microchannels with emphasis on the slip effects under coupling of interfacial electric and fluid slippage phenomena. Commonly used linear model with slip-independent zeta potential and the nonlinear model at limiting (high-K) condition with slip-dependent zeta potential are solved analytically. Then, numerical solutions of the electrokinetic flow model with zeta potential varying with slip length are analyzed. Different from the general notion of “the more hydrophobic the channel wall, the higher the flowrate,” the results with slip-independent and slip-dependent zeta potentials both disclose that flowrate becomes insensitive to the wall hydrophobicity or fluid slippage at sufficiently large slip lengths. Boundary slip not only assists fluid motion but also enhances counter-ions transport in EDL and, thus, results in strong streaming potential as well as electrokinetic retardation. With slip-dependent zeta potential considered, flowrate varies non-monotonically with increasing slip length due to competition of the favorable and adverse effects with more complicated interactions. The influence of the slip on the electrokinetic flow is eventually nullified at large slip lengths for balance of the counter effects, and the flowrate becomes insensitive to further hydrophobicity of the microchannel. The occurrence of maximum, minimum, and insensitivity on the flowrate-slip curves can be premature at a higher zeta potential and/or larger electrokinetic separation distance.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have