Abstract

Abstract The trend analysis approach is adopted for the prediction of future climatological behavior and climate change impact on agriculture, the environment, and water resources. In this study, the innovative trend pivot analysis method (ITPAM) and trend polygon star concept method were applied for precipitation trend detection at 11 stations located in the Soan River basin (SRB), Potohar region, Pakistan. Polygon graphics of total monthly precipitation data were created and trends length and slope were calculated separately for arithmetic mean and standard deviation. As a result, the innovative methods produced useful scientific information and helped in identifying, interpreting, and calculating monthly shifts under different trend behaviors, that is, increase in some stations and decrease in others of precipitation data. This increasing and decreasing variability emerges from climate change. The risk graphs of the total monthly precipitation and monthly polygonal trends appear to show changes in the trend of meteorological data in the Potohar region of Pakistan. The monsoonal rainfall of all stations shows a complex nature of behavior, and monthly distribution is uneven. There is a decreasing trend of rainfall in high land stations of SRB with a significant change between the first dataset and the second dataset in July and August. It was examined that monsoon rainfall is increasing in lowland stations indicating a shifting pattern of monsoonal rainfall from highland to lowland areas of SRB. The increasing and decreasing trends in different periods with evidence of seasonal variations may cause irregular behavior in the water resources and agricultural sectors. Significance Statement The monthly polygonal trends with risk graphs of total monthly precipitation data depicted a clear picture of climate change effects in the Potohar region of Pakistan. The monsoonal rainfall showed a significant decreasing trend in highland stations and an increasing trend in lowland stations, indicating a shifting pattern of monsoonal rainfall from highland to lowland areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.