Abstract

We numerically investigated power deposition and temperature rise generated due to the presence of a titanium rod placed in a phantom, located inside a 1.5 T coil. The induced power deposition and temperature rise normalized to incident tangential electric field was found to be dependent on distance to the phantom wall. The different dependence of the integral of power deposition over a box surrounded the rod and the temperature rise on American Society for Testing and Materials (ASTM) phantom medium electrical conductivity was observed. The consequences of numerical domain simplification have been analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call