Abstract

The current–voltage (I–V) characteristics of Au electrode (M)–polyimide (PI) Langmuir–Blodgett (LB) film (I)–Al electrode (M)-MIM element are analyzed, taking into account the interfacial electrostatic phenomena and the presence of the interfacial electronic states. On the basis of the Richardson–Schottky model, the attractive force and potential energy created by a series of mirror image charges against both electrodes are calculated. A positive bias (Vex>0) applied to an Au–PI LB film–Al element gives rise to the injection of electrons from the Au electrode into the lowest unoccupied molecular orbitals (LUMO) of PI LB film, whereas a negative bias (Vex<0) causes the injection from Al electrode. The potential distributions across the PI LB film and the potential barrier height under the condition of various externally applied voltages (Vex) are calculated, assuming the presence of surface states at the metal/film interface. It is determined that the calculation results of the I–V characteristics can predict the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.