Abstract

Temperature is an important and commonly used parameter among others to study properties of matter created during high energy collisions of nuclei. Experimental data from JINR and UrQMD (version 3.3p2) model simulations have been used to estimate temperature and other properties of positive pions in collisions of deuteron with carbon nuclei at incident momentum of 4.2[Formula: see text]GeV/[Formula: see text] in this paper. Transverse mass and transverse momentum spectra have been used to get inverse slope parameter/temperature of said particles, with the help of some fitting equations. These equations are referred as Hagedorn Thermodynamic and Boltzmann Distribution functions. Such functions or equations are used to describe particles spectra. Temperature of positive pions has been found to be equal to [Formula: see text] and [Formula: see text][Formula: see text]MeV in experimental and model, respectively, using Hagedorn function. Results from both experimental and model calculations have also been compared with each other and thus most reliable fitting function has been suggested. It is found that Hagedorn Thermodynamic function is the most reliable function to get pions’ temperature in said collision system at given momentum. Similarly, results obtained in this paper have been compared with results from other experiments in the world and worthy conclusions have been reached and reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.