Abstract
In this paper, an approach to the analysis of arbitrary thin to moderately thick plates and shells by the edge-based smoothed finite element method (ES-FEM) is presented. The formulation is based on the first order shear deformation theory, and Discrete Shear Gap (DSG) method is employed to mitigate the shear locking. Triangular meshes are used as they can be generated automatically for complicated geometries. The discretized system equations are obtained using the smoothed Galerkin weak form, and the numerical integration is applied based on the edge-based smoothing domains. The smoothing operation can provide a much needed softening effect to the FEM model to reduce the well-known “overly stiff” behavior caused by the fully compatible implementation of the displacement approach based on the Galerkin weakform, and hence improve significantly the solution accuracy. A number of benchmark problems have been studied and the results confirm that the present method can provide accurate results for both plate and shell using triangular mesh.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have