Abstract

The aim of this work is to analyze the plastic flow instability in Zn-21Al-2Cu alloy deformed under 10−3 s−1 and 513 K, which are optimum conditions for inducing superplastic behavior in this alloy. An evaluation using the Hart and Wilkinson–Caceres criteria showed that the limited stability of plastic flow observed in this alloy is related to low values of the strain-rate sensitivity index (m) and the strain-hardening coefficient (γ), combined with the tendency of these parameters to decrease depending on true strain (e). The reduction in m and γ values could be associated with the early onset of plastic instability and with microstructural changes observed as function of the strain. Grain growth induced by deformation seems to be important during the first stage of deformation of this alloy. However, when e > 0.4 this growth is accompanied by other microstructural rearrangements. These results suggest that in this alloy, a grain boundary sliding mechanism acts to allow a steady superplastic flow only for e 0.7 as another mechanism is thought to take over.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.