Abstract

The properties of planar defect structures, which are created by changing the dielectric distribution at the central layer of a three-dimensional (3D) layer-by-layer photonic crystal, are theoretically investigated by utilizing a parallel 3D finite-difference time-domain method and the plane-wave expansion method. Two different kinds of resonant modes, the defect mode and the band-edge resonant mode, have been clarified by spectrum analysis and calculated mode profiles. It is shown that the resonant modes can be controlled by changing the periodicity, the thickness, or the dielectric constant of materials at the defect layer. Besides, photonic band edges can be shifted by applying dislocation to a layer of dielectric rods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call