Abstract

A generalized solution methodology based on piecewise linear vector fields is proposed for piecewise linear systems with singular regions or asymmetric restoring forces which vary spatially and temporally. In matrix representation for these systems, state variables in each region can be explicitly expressed as a function of the time the orbit spends between two boundaries or the time when the orbit hits the boundary. The time can be determined by the Brent method, and periodic solutions can then be obtained. Analytical solutions are validated on a system with 3-regions of displacement and 2-regions of time, a circumferential vibration of gear meshing system, by using the newly developed numerical method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call