Abstract

Abstract A generalized solution methodology based on piecewise linear vector fields is proposed for piecewise linear systems with singular regions or asymmetric restoring forces which vary spatially and temporally. In matrix representation for these systems, state variables in each region can be explicitly expressed as a function of the time the orbit spends between two boundaries or the time the orbit takes to pass through the boundary. The time can be determined by the Brent method, and periodic solutions can then be obtained. Analytical solutions are validated on a system with 3-regions of displacement and 2-regions of time, a circumferential vibration of gear meshing system, by using the newly developed numerical method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.