Abstract

Climatic change has frequently been identified as a key driver of change in biological communities. These changes can take the form of alterations to population dynamics, phenotypic characters, genetics and the life history of organisms and can have impacts on entire ecosystems. This study presents a novel investigation of how changes in a large scale climatic index, the North Atlantic Oscillation (NAO) can influence population dynamics and phenotypic characters in a population of ungulates. We use an integral projection model combined with actual climate change predictions to project future body size distributions for a population of Soay sheep Ovis aries. The climate change predictions used to direct our model projections were taken from published results of climate models, covering a range of different emissions scenarios. Our model results showed that for positive changes in the mean NAO large population declines occurred simultaneously with increases in mean body weight. The exact direction and magnitude of changes to population dynamics and character distributions were dependent on the greenhouse gas emissions scenario and model used to predict the NAO. This study has demonstrated how integral projection models can use outputs of climate models to direct projections of population dynamics and phenotypic character distributions. This approach allows the results of this study to be placed within current climate change research. The nature of integral projection models means that this methodology can be easily applied to other populations. The model can also be easily updated when new climate change predictions become available, making it a useful tool for understanding potential population level responses to climatic change.SynthesisUnderstanding how changes in climate affect biological communities is a key component in predicting the future form of populations. Utilising a novel approach that incorporates climatic drivers (in this instance the winter North Atlantic Oscillation) into an integral projection model framework, we predict future Soay sheep dynamics under specific climate change scenarios. Tracking quantitative trait distributions and life history metrics, our results predict declining population size and increasing body weight for an increasingly positive winter North Atlantic Oscillation index, as predicted by climate models. This has important implications for future wildlife management strategies and linking demographic responses to climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.