Abstract

A fuel cell air independent propulsion (AIP) system of underwater vehicle requires a hydrogen storage system. The methanol steam reforming system is a candidate of hydrogen storage which can produce hydrogen from chemical reaction. Different from reforming system for station fuel cell system, the methanol steam reformer (MSR) for underwater vehicle requires high-pressure operation.Since the longitudinal temperature uniformity is a core parameter of conversion efficiency of steam reforming system, this study is focused on computational analysis of phase change heat transfer through the annulus for methanol steam reforming reaction. The annulus MSR using phase change material was developed to improve the temperature uniformity. The simulation model is verified with safety and performance analysis code (SPACE). The performance parameters of MSR were flow arrangement, steam to carbon ratio (SCR), and gas hourly space velocity (GHSV). The results were analyzed in terms of the hydrogen yield, heat flux, liquid mass flow rate, and methanol conversion rate. The flow arrangement varied the methanol conversion rate to a minor extent of approximately 0.1% because wall temperature was maintained uniformly. In the case of SCR, the hydrogen yield at SCR 2.5 was 0.637 (dry basis), which was the highest yield rate. Also, if GHSV was increased, hydrogen yield decreased from 0.690 (dry basis) to 0.527 (dry basis). The heat transfer pattern was also analyzed and it was found that steam is interactively condensed along with the progress of the reforming reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.