Abstract

Integrated pest control is a practice commonly used in apple orchards in southern Brazil. This type of management is an important tool to help improve quality and increase yields. This study aimed to identify areas with higher and lower incidence of aerial pests in a commercial apple orchard, regarding data collected from three different crops using georeferenced traps. Geostatistical analyses were performed, based on the modeling of semivariograms and spatial interpolation using the kriging method; and clustering, based on specific unsupervised machine learning algorithms for count data. The algorithms were selected from measures of stability, connectivity and homogeneity, seeking to identify areas with different incidence of pests that could help farmer decision making regarding insect population control using pesticides. The geostatistical analysis verified the presence of individual pest infestations in specific sites of the study area. Additionally, the analysis using machine learning allowed the identification of areas with incidence above the average for all analyzed pests, especially in the central area of the map. The process of evaluation described in this study can serve as an aid for risk analysis, promoting management benefits and reducing cost in the farms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.