Abstract
Abstract Detection of anomalous events in practical operation of oil and gas (O&G) wells and lines can help to avoid production losses, environmental disasters, and human fatalities, besides decreasing maintenance costs. Supervised machine learning algorithms have been successful to detect, diagnose, and forecast anomalous events in O&G industry. Nevertheless, these algorithms need a large quantity of annotated dataset and labelling data in real world scenarios is typically unfeasible because of exhaustive work of experts. Therefore, as unsupervised machine learning does not require an annotated dataset, this paper intends to perform a comparative evaluation performance of unsupervised learning algorithms to support experts for anomaly detection and pattern recognition in multivariate time-series data. So, the goal is to allow experts to analyze a small set of patterns and label them, instead of analyzing large datasets. This paper used the public 3W database of three offshore naturally flowing wells. The experiment used real data of production of O&G from underground reservoirs with the following anomalous events: (i) spurious closure of Downhole Safety Valve (DHSV) and (ii) quick restriction in Production Choke (PCK). Six unsupervised machine learning algorithms were assessed: Cluster-based Algorithm for Anomaly Detection in Time Series Using Mahalanobis Distance (C-AMDATS), Luminol Bitmap, SAX-REPEAT, k-NN, Bootstrap, and Robust Random Cut Forest (RRCF). The comparison evaluation of unsupervised learning algorithms was performed using a set of metrics: accuracy (ACC), precision (PR), recall (REC), specificity (SP), F1-Score (F1), Area Under the Receiver Operating Characteristic Curve (AUC-ROC), and Area Under the Precision-Recall Curve (AUC-PRC). The experiments only used the data labels for assessment purposes. The results revealed that unsupervised learning successfully detected the patterns of interest in multivariate data without prior annotation, with emphasis on the C-AMDATS algorithm. Thus, unsupervised learning can leverage supervised models through the support given to data annotation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.