Abstract
The thermodynamic analysis was done for the duplexes formed by fluorescently labeled oligonucleotide targets on a genetic hexanucleotide microchip. All 4096 different hexanucleotide chains were immobilized as probes in individual gel pads of the microchip. To strengthen the hybridization, each hexamer was extended at both ends by one nucleotide from the equimolar mixture of all four nucleotides to serve as nonselective linkers. It has been shown that the melting curves for oligonucleotide duplexes formed on the microchip and in a solution are quite similar. The influence of ionic surrounding has been studied in terms of the hybridization efficiency and discrimination between the mismatched and perfect duplexes. Different approaches have been tested to compensate the dependence of duplex stability on the GC content. It has been demonstrated that the use of chaotropic agents, addition of nonlabeled GC-rich competitor oligonucleotides, as well as creation of a temperature gradient along the microchip reproducing the distribution of melting temperatures, efficiently level out the AT/GC differences. The use of tetramethylammonium chloride for the same purpose was accompanied by weakening to some extent the discrimination between the mismatched duplexes and the perfect ones.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have