Abstract

The production of low-temperature reheated grain-oriented silicon steel is mainly based on the acquired inhibitor method. Due to the additional nitriding process, a high nitrogen content exists in the oxide layer, which changes the structure of the oxide layer. In this study, the structure of the surface oxide layer after nitriding was analyzed by scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD), glow discharge spectrometry (GDS), and X-ray diffraction (XRD). The size and orientation of ferritic grains in the oxide layer were characterized, and the distribution characteristics of the key elements along the thickness direction were determined. The results show that the oxide layer of the steel sample mainly comprised particles of Fe2SiO4 and spherical and lamellar SiO2, and Fe4N and fcc-Fe phases were also detected. Moreover, the size and orientation of ferritic grains in the oxide layer were different from those of coarse matrix ferritic grains beneath the oxide layer; however, some ferritic grains exhibited same orientations as those in the neighboring matrix. Higher nitrogen content was detected in the oxide layer than that in the matrix beneath the oxide layer. The form of nitrogen enrichment in the oxide layer was analyzed, and the growth mechanism of ferritic grains during the oxide layer formation is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.