Abstract

The finite-difference time-domain (FDTD) technique is applied to the analysis of planar dielectric waveguides controlled by means of an optical beam. This beam, with an appropriate energy, induces a nonuniform plasma in a semiconductor layer deposited on the waveguide core. The resulting effects are analyzed through the phase dispersion characteristics. Due to the complexity of the problem, the FDTD formulation does not allow the calculation of the attenuation characteristic, particularly when the plasma presents an intermediate density, which causes a strong interaction with the guided mode. The simulations shown here suggest that the light beam may have an effective control of the phase response of a single waveguide and of the coupling between two parallel coupled waveguides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.