Abstract

In a previous paper, the authors (ibid., vol.38, pp.989-998, May 1991) clarified the operational mechanism of a charge modulation device (CMD) image sensor and confirmed that numerical calculations using the transistor analysis program for imagers calculating non-steady-state equations (TRINE) predicted the actual performance of a CMD imager within a 20% discrepancy. Following these results, the scaling-down of device dimensions and the inherent operational speed are estimated using TRINE in order to realize a future high-resolution CMD image sensor. The analysis shows that a device size of 5.0 mu m (H)*5.2 mu m (V) is attainable without degrading the performance of the 10.2 mu m (H)*10.4 mu m (V) CMD imager and that the operational speed of a CMD is fast enough for a high-definition TV (HDTV) application which requires a scan rate of several tens of nanoseconds. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.