Abstract

The enzymatic transfer of ADP-ribose from NAD to histone H(1) [defined as trans(oligo-ADP-ribosylation)] or to PARP-1 [defined as auto(poly-ADP-ribosylation)] requires binding of coenzymic DNA. The preceding paper [Kun, E., et al. (2004) Biochemistry 43, 210-216] shows that oligonucleotides of dsDNA can serve as coenzymic DNA for PARP-1 trans- or auto-modification activity. Results of DNA-protein binding (EMSA) experiments reported here demonstrate that short DNA oligonucleotides containing the 5'-TGTTG-3' nucleotide sequence motif preferentially bind to cloned PARP-1 in vitro. The same nucleotide sequence motif is responsible for striated myocyte-selective transcription of a contractile protein gene encoding cardiac troponin T (cTnT). Results of experiments reported here demonstrate that mutation of this motif also abolishes the differentiation-dependent activation of the transfected cTnT promoter in myoblasts cultured in vitro, indicating that nucleotide sequence-dependent binding of PARP-1 to promoter DNA of the cTnT gene is also necessary for differentiation-dependent activation. Thus, PARP-1 has two types of dsDNA binding activity: (1) nucleotide sequence-dependent binding, analyzed here with EMSA experiments, and (2) coenzymic binding, measured catalytically, which does not depend on the nucleotide sequence of the dsDNA. We hypothesize that the well-known association of PARP-1 with chromatin can be attributed to its stable binding to chromosomal dsDNA, some portion of which is likely to be nucleotide sequence-dependent binding. According to this hypothesis, the distribution of this protein-modifying enzyme in chromatin may be targeted to specific genomic loci and vary according to cell type and developmental stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.