Abstract

An approach is proposed to estimate the collapse load of linear elastic isotropic no-tension 2D solids. The material is replaced by a suitable equivalent orthotropic material with spatially varying local properties. A non-incremental energy-based algorithm is implemented to define the distribution and the orientation of the equivalent material, minimizing the potential energy so as to achieve a compression-only state of stress. The algorithm is embedded within a numerical procedure that evaluates the collapse mechanisms of structural elements under monotonic loading. The accuracy of the method is assessed through comparisons with the “exact” results predicted by limit analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call